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For an imperfect production system, to reduce quality-related costs, a manager may consider investing capital in quality
improvement. In general, the investment expense in reducing the defective rate of items is often paid by the vendor. On
the other hand, the buyer may inspect the product quality as the order is received which implies it incurs an inspection
cost. In a supply chain integrated system, to accomplish global optimisation, the vendor and buyer can agree to jointly
invest capital to improve the imperfect production processes, and the buyer can remove the inspection programme as the
defective rate reaches a certain low-level. Hence, this paper investigates the impacts of collaborative investment and
inspection policies on an integrated inventory model with defective items. The objective of this study is to seek the opti-
mal order quantity, shipping times from the vendor to the buyer per production run, and the defective rate that minimise
the joint total cost per unit time. An algorithm is developed to find the optimal solution. Several numerical examples are
presented to demonstrate the proposed model and solution procedure, and then several management insights are obtained
from the numerical examples.

Keywords: inventory; integrated model; defective items; capital investment; non-inspect

1. Introduction and literature review

As we know, the objective of supply chain management is to be efficient and cost-effective across the entire system
where total system-wide costs need to be minimised. To accomplish global optimisation in the field of inventory man-
agement, the concept of joint economic lot size (JELS) is introduced to refine the well-known classical economic order
quantity (EOQ) model. The JELS model for a single vendor-single buyer was first developed and introduced by Goyal
(1977). Later, Banerjee (1986) assumed that the vendor produces on a lot-for-lot basis in response the buyer’s order,
and developed the JELS model. Goyal (1988) extended Banerjee’s (1986) model and assumed that the vendor’s lot size
is an integer multiple of the buyer’s order size. Furthermore, Lu (1995) relaxed Goyal’s (1988) assumption of a single
vendor-single-buyer and proposed a model where the vendor can actually supply the buyer in a number of equal smaller
lot-sizes, even before completing the entire lot. Further literatures in support of this issue include Aderohunmu,
Mobolurin, and Bryson (1995), Goyal (1995), Hill (1997), Sarker and Khan (1999, 2003), Khan and Sarker (2002),
Sarker (2002), Wu and Ouyang (2003), Hill and Omar (2006) and Lin (2009). Nevertheless, the majority of above
research focused on the production shipment schedule between the vendor and buyer neglects the relationship between
order lot and quality.

It is common yet unrealistic to assume that all units produced are good quality. Indeed, the production process may
deteriorate and hence the defective or poor quality items will be produced. That is, product quality is not always perfect
and actually dependent on the production process. Rosenblatt and Lee (1986) considered the effect of imperfect produc-
tion processes on the economic production quantity (EPQ) model. At the same time, Porteus (1986) incorporated the
effect of the defective items into the EPQ model and introduced the option of investing capital in production process
quality improvement. Kim and Hong (1999) extended Rosenblatt and Lee’s (1986) model and determined the optimal
production run length in deteriorating production processes. Salameh and Jaber (2000) proposed a modified EPQ model
by accounting for imperfect quality items where poor-quality items will be sold as a single batch in a discounted price
at the end of the screening process. Following this, numerous studies on imperfect production processes have been
published such as Goyal and Cárdenas-Barrón (2002), Chung and Hou (2003), Papachristos and Konstantaras (2006),
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Abdullah and Gultekin (2007), Halim, Giri, and Chaudhuri (2009) and their references. However, all articles described
above are only from the perspective of the vendor.

Huang (2002) developed an integrated production-inventory model with imperfect quality where the number of
defective items follows a given probability density function. Wee, Yu, and Wang (2006) investigated an integrated
model for deteriorating items with imperfect quality in which shortages are allowed and completely backordered. Lo,
Wee, and Huang (2007) developed an integrated model with imperfect production processes and Weibull distribution
deterioration under inflation. Many other related articles can be found in Lin, Chen, and Kroll (2003), Goyal, Huang,
and Chen (2003), Huang (2004), Ho et al. (2011), Sana (2011) and their references. Furthermore, for an imperfect pro-
duction system, a manager may consider investing capital in quality improvement to reduce quality-related costs. That
is, the production process is controllable and the defective rate of items can be reduced by investing capacity to improve
manufacturing processes. Hong (1997) extended Rosenblatt and Lee (1986) to take the determination of production
cycles, procurement schedules, and joint investment in set-up reduction and process quality improvement into consider-
ation. Ouyang and Chang (2000) investigated the impact of quality improvement on the modified lot size reorder point
model. Hou and Lin (2004) studied the effects of an imperfect production process on the optimal production run length
when capital investment in process quality improvement is adopted. Yang and Pan (2004) proposed an integrated inven-
tory model involving variable lead time and quality improvement investment with normal distributional demand. Other
related studies that tackled quality improvement can be found in Keller and Noori (1988), Hwang, Kim, and Kim
(1993), Hong and Hayya (1995), Tripathy, Wee, and Majhi (2003), Ouyang Wu, and Ho (2006, 2007) and Yoo, Kim,
and Park (2012).

In general, the investment expense in reducing the defective rate of items should be paid by the vendor. However, if
the expense is too high for the vendor to pay, it will be not feasible to achieve global optimisation for a supply chain
integrated system. On the other hand, as the defective items are produced due to the imperfect production process, the
buyer may assess the product quality as the order is received, before stocking it for immediate or later use. He/she may
perform a complete inspection or inspect samples which implies it incurs an inspection cost. In a supply chain integrated
system, to accomplish global optimisation, the vendor and buyer can agree to jointly invest capital to improve the
imperfect production processes, and then the buyer will remove the inspection step upon receipt of the goods as the
defective rate reaches a certain low-level (in this article we refer to this as ‘non-inspect’). If the buyer does not inspect
the received items, they will be treated as non-defective products to stock and sell to customers, resulting in a penalty
cost for the defective items returned from customers. Consequently, the optimal investment strategy, by trading off the
inspection cost against the penalty cost, is an import issue and needs to be incorporated in the field of inventory
problems.

Therefore, this paper develops an integrated inventory model with defective items in which the defective rate can be
improved through joint capital investment from the vendor and buyer. Mathematical analyses are utilised to seek the
optimal order quantity, shipping times from the vendor to the buyer per production run, and defective rate that minimise
the joint total cost per unit time. An algorithm is developed to find the optimal solution. Furthermore, several numerical
examples are presented to demonstrate the proposed model and solution procedure, and then several management
insights are obtained from the numerical examples.

2. Notation and assumptions

The following notation is used throughout this paper:

D Demand rate of the market.
P Production rate of the vendor.
A The buyer’s ordering cost per order.
S The vendor’s setup cost per setup.
hb1 The buyer’s holding cost per non-defective item per unit time.
hb2 The buyer’s holding cost per defective item per unit time, where hb2\hb1 :
hv1 The vendor’s holding cost per item per unit time.
hv2 The vendor’s treatment cost per detective item.
x The buyer’s inspecting rate per order.
Cs The buyer’s inspecting cost per unit.
Cp The buyer’s penalty cost per defective item which is returned from the customer.
CT The vendor’s fixed cost of transportation per shipment.
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Ct The vendor’s variable cost of transportation per unit.
h The opportunity cost of the capital investment per dollar per unit time.
kU The proportion of defective items before improving production process, kU\1 and is given.
kL The proportion of defective items which reaches ‘non-inspect’, where kL\kU and is given.
k The proportion of defective items, where k 2 (0; kU �, a decision variable.
Q The buyer’s order quantity, a decision variable.
T The length of buyer’s replenishment cycle, a decision variable.
m The number of shipment for the vendor to buyer per production cycle, an integer decision variable.
q Size of each shipment from the vendor to buyer in a production bath, a decision variable.
JTC(k; q; m) The joint total cost per unit time, which is a function of k, q and m
⁄ The superscript represents optimal value.

In addition, the following assumptions are used throughout this paper:

(1) There is single-vendor and single-buyer for a single product in this model.
(2) The vendor’s production rate of non-defective item is finite and greater than the demand rate, i.e. P(1� k)[D.
(3) The buyer orders a lot of size Q (for non-defective items) per order. The vendor produces mq units in each

production run, and delivers q units to the buyer in each shipment.
(4) The capital investment, I(k), in improving production process quality to reduce the defective rate of the product

is given as a logarithmic function of k, i.e.

I(k) ¼ 1

d
ln

kU
k

� �
; 0\k � kU ;

where kU is the proportion of defective items before improving production processes and d denotes the percent-
age decrease in k per dollar increase in I(k). This particular function is similar to Hall (1983), and has been
widely used in the literature (see Porteus 1986; Keller and Noori 1988).

(5) The capital investment is shared between the vendor and buyer jointly. That is, the proportions of capital invest-
ments which the buyer and vendor should invest in machinery equipment are a and 1� a, respectively,
0 6 a 6 1 .

(6) When the order is received, the buyer may perform a 100% inspection with inspect rate x to check the product
quality before selling it. Defective items in each batch are discovered and returned to the vendor at the time of
delivery of the next lot. Therefore, it incurs inspection and holding costs (including non-defective items and
defective items) for the buyer. On the other hand, as the proportion of defective items reaches to or less than a
certain low-level rate, kL, due to capital investment, the buyer does not need to conduct any cheques on the
received items. We term this as ‘non-inspect’. In this situation, all the received items from the vendor are sold to
the customers directly. As a result, the defective items in quantity kq (where k 6 kL) are sequentially returned
from customers later. These defective items are stored and returned to the vendor at the end of each
replenishment cycle.

(7) Inspection is non-destructive and error-free.

3. Model formulation

Based on above notation and assumptions, we develop an integrated inventory model with defective items. The inte-
grated inventory system evolves as follows: the buyer orders Q units per order and the vendor delivers q units to the
buyer in each shipment. Each received lot contains a percentage, k, of defective items. Hence, the number of
non-defective items in each shipment is (1� k)q which equals to the buyer’s order quantity Q, i.e. Q ¼ (1� k)q and,
therefore, the replenishment cycle length is Q=D ¼ (1� k)q=D: On the other hand, if the defective rate of the product
is reduced to or less than kL by investing capital in improving the production process, the buyer will not inspect, and
all received items will be treated as non-defective products to stock and sell. Hence, the vendor’s shipment size q is
equal to the buyer’s order quantity Q, i.e. Q ¼ q and therefore, the replenishment cycle length is Q=D ¼ q=D: Follow-
ing, we first establish the total cost per unit time of the buyer and vendor, respectively. Then, the joint total cost per unit
time of the integrated inventory system is developed.

International Journal of Production Research 5791



3.1 The buyer’s total cost per unit time

The buyer’s total cost per replenishment cycle, given that there are defective items in an arriving shipment, consists of
the following elements.

(a) Ordering cost
The buyer’s ordering cost per replenishment cycle is A:

(b) Opportunity cost of capital investment
There is an opportunity cost due to capital investment in improving production process quality which is hI(k). Because
the capital investment is shared out between the buyer and vendor where the proportion of the buyer’s investment is a
(0 6 a 6 1), the opportunity cost of capital investment in improving production process quality per cycle for the buyer
is ahI(k)T ¼ a(h=d)T ln½kU=k�, where

T ¼ Q=D ¼ (1� k)q=D; if kL\k � kU ;
q=D; if 0\k � kL:

�

(c) Inspection cost
Prior to investing capital to improve the production process, the defective rate for the items received by the buyer is kU .
After the capital investment in improving the production process quality, if kL\k 6 kU , then the buyer will inspect all
received items. The inspection cost per unit is Cs and the buyer receives quantity q in each shipment; thus, the inspec-
tion cost per cycle is Csq. On the other hand, if 0\k 6 kL, then the buyer will not need to inspect all received items
and the inspection cost per cycle is zero. Hence, the inspection cost per replenishment cycle for the buyer is

Csq;
0;

�
if kL\k � kU ;
if 0\k � kL:

(d) Holding cost of non-defective items
As the buyer receives an arriving lot q containing some defective items with defective rate k from the vendor, he/she
may inspect all received items with inspect rate x if kL\k 6 kU and the holding cost of non-defective items (include
the defective items before they are identified) per cycle is

hb1 ½(1� k)qT=2þ kq2=(2x)� ¼ hb1q
2½(1� k)2=(2D)þ k=(2x)�:

On the other hand, if 0\k 6 kL, all received items will be treated as non-defective items to stock and sell and
hence the holding cost per cycle is hb1qT=2 ¼ hb1q

2=(2D): The behaviour of the inventory level for the buyer is shown
in Figures 1(a) and 1(b).

Consequently, the holding cost of non-defective items per replenishment cycle is given by

hb1 q
2½(1� k)2=(2D)þ k=(2x)�; if kL\k � kU ;

hb1q
2=(2D); if 0\k � kL:

�

(e) Holding cost of defective items
In every shipment, the buyer will receive kq defective items. When kL\k 6 kU , these defective items will be discov-
ered and returned to the vendor at the end of each shipment cycle, and hence the holding cost for defective items per
replenishment cycle is hb2 ½kqT � kq2=(2x)� ¼ hb2kq

2½(1� k)=D� 1=(2x)� (see Figure 1(a)). On the other hand, if
0\k 6 kL, due to items not being inspected, the defective items are sequentially returned from customers later. Similar,
these defective items are stored and returned to the vendor at the end of each cycle, and hence the holding cost for
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defective items per cycle is hb2kqT=2 ¼ hb2kq
2=(2D) (see Figure 1(b)). Therefore, the holding cost for defective

items is

hb2kq
2½(1� k)=D� 1=(2x)�; if kL\k � kU ;

hb2kq
2=(2D); if 0\k � kL:

�

(f) Penalty cost of defective items (external failure cost)
As mentioned above, if kL\k 6 kU , the buyer may inspect all received items, and hence there is no penalty cost. On
the contrary, if 0\k 6 kL, all units of received items will be treated as non-defective products to sell and then be
sequentially returned by customers and incur a penalty cost of Cp per unit for the buyer. Hence, the penalty cost of
defective items per cycle is

0; if kL\k � kU ;
Cpkq; if 0\k � kL:

�

Consequently, the buyer’s total relevant cost per unit time is the sum of the above elements divided by the length of
the replenishment cycle (1� k)q=D or q=D. That is,

(1 - λ)q

T=(1 -λ)q/D

λ
L 

< λ ≤ λ
U

q/x

λq

q

0 < λ ≤ λ
L

λq

q

T=q /D

(a)

(b)

Figure 1. Inventory level of the buyer over time T.
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TCb(k; q) ¼ TC1b(k; q); if kL\k � kU ;
TC2b(k; q); if 0\k � kL;

�

where

TC1b(k; q) ¼ D

(1� k)q
Aþ ah(1� k)q

dD
ln

kU
k

� �
þ Csqþ hb1q

2 (1� k)2

2D

�
þ k
2x

�
þ hb2kq

2 1� k
D

� 1

2x

� �� �
; (1)

and

TC2b(k; q) ¼ D

q
Aþ ah q

dD
ln

kU
k

� �
þ hb1q

2

2D
þ hb2k q2

2D
þ Cpkq

� �
: (2)

3.2 The vendor’s total cost per unit time

The vendor’s total cost per production cycle consists of the following elements:

(a) Setup cost
The vendor’s set-up cost per production cycle is S:

(b) Transportation cost
The vendor’s transportation cost per shipment is the sum of a fixed per-lot transportation cost CT and a variable trans-
portation cost Ctq, hence, the total transportation cost per production cycle is m(CT þ Ctq), where

m � m1; if kL\k � kU ;
m2; if 0\k � kL:

�
(3)

(c) Opportunity cost of capital investment
The capital investment is shared out between the buyer and vendor, with the proportion of the vendor’s investment
being 1� a (0 � a � 1). From the above, we know that the length of each production cycle for the vendor is
mT ¼ m1(1� k)q=D if kL\k 6 kU , while is mT ¼ m2q=D if 0\k 6 kL. Therefore, the opportunity cost of capital
investment per production cycle for the vendor is

(1� a)hI(k)mT ¼ m1(1� a)(1� k)(h=d)(q=D) ln½kU=k� if kL\k � kU ;
m2(1� a)(h=d)(q=D) ln½kU=k� if 0\k � kL:

�

(d) Holding cost
When the first q units are produced, the vendor will deliver them to the buyer. After the first shipment, the vendor will
schedule successive deliveries every (1� k)q=D units of time until the inventory level falls to zero if kL\k 6 kU . The
behaviour of the inventory level for the vendor is shown in Figures 2(a). Consequently, the cumulative inventory per
production cycle for the vendor is

m1q
q

P
þ (m1 � 1)(1� k)q

D

� �
� m2

1q
2

2P

� �
� (1� k)q2

D
1þ 2þ � � � þ (m1 � 1)ð Þ

� �
¼ m1q

2 1

P
þ (m1 � 1)(1� k)

2D
� m1

2P

� �
:
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On the other hand, if 0\k 6 kL, then the buyer will not inspect and all received items will be treated as
non-defective products to stock (see Figure 2(b)). In this case, the cumulative inventory per production cycle for the
vendor is

m2q
q

P
þ (m2 � 1)

q

D

� 	
� m2

2q
2

2P

� �
� q2

D
(1þ 2þ � � � þ (m2 � 1))

� �
¼ m2q

2 1

P
þ m2 � 1

2D
� m2

2P

� �
:

Therefore, the holding cost per production cycle is

hv1m1q2
1

P
þ (m1 � 1)(1� k)

2D
� m1

2P

� �
; if kL\k � kL

hv1m2q2
1

P
þ (m2 � 1)

2D
� m2

2P

� �
; if 0 � k � kL:

8>><
>>:

(e) Treatment cost for defective items
In each shipment with size q, kq defective items will be returned by the buyer at the end of shipment cycle. The treat-
ment cost for returned defective items per production cycle is hv2mkq, where m is shown as in Equation (3).

Consequently, the vendor’s total relevant cost per unit time is the sum of the above elements divided by the length
of production cycle m1(1� k)q=D or m2q=D. That is,

Figure 2. Vendor’s inventory level per production run.
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TCv(k; m) ¼ TC1v(k; m1); if kL\k � kU ;
TC2v(k; m2); if 0\k � kL;

�

where

TC1v(k; m1) ¼ D

m1(1� k)q
S þ m1(CT þ Ctq)þ (1� a)h (1� k)m1q

dD
ln

kU
k

� �
þhv1m1q

2 1

P
þ (m1 � 1)(1� k)

2D
� m1

2P

� �
þ hv2m1kq

� �
;

(4)

and

TC2v(k; m2) ¼ D

m2q
S þ m2(CT þ Ctq)þ (1� a)hm2q

dD
ln

kU
k

� �
þ hv1m2q

2 1

P
þ (m2 � 1)

2D
� m2

2P

� �
þ hv2m2kq

� �
: (5)

3.3 The joint total cost per unit time

Once the buyer and vendor have built up a long-term strategic partnership, they can determine together what the best
policy is for one another. Therefore, the joint total cost per unit time can be obtained as the sum of the buyer’s and ven-
dor’s total costs per unit time, which leads to

JTC(k; q; m) ¼ TCb(k; q)þ TCv(k; m) ¼ JTC1(k; q; m1); if kL\k � kU ;
JTC2(k; q; m2); if 0\k � kL;

�

where

JTC1(k; q; m1) ¼ D

(1� k)q
m1Aþ S þ m1CT

m1
þ h(1� k)q

dD
ln

kU
k

� ��
þ (Ct þ Cs þ hv2k) qþ hb1q

2 (1� k)2

2D
þ k
2x

� �

þ hb2kq
2 1� k

D
� 1

2x

� �
þm1(1� k)2q2

1

P
þ (m1 � 1)

2D
� m1

2P

� ��
; (6)

and

JTC2(k; q; m2) ¼ D

q

m2Aþ S þ m2CT

m2
þ hq
dD

ln
kU
k

� �
þ (hb1 þ hb2k)q

2

2D

�
þ(Ct þ Cpkþ hv2k) q

þ hv1m2(1� k)2q2
1

P
þ (m2 � 1)

2D
� m2

2P

� ��
: ð7Þ

4. Theoretical results

The objective of this study is to determine the optimal batch quantity, q�; the proportion of defective items, k�, and the
number of shipment per production cycle, m�, to minimise the joint total cost per unit time.

In order to solve this problem, we consider the following two cases: (i) kL\k � kU and (ii) 0\k � kL.

Case 1. kL\k 6 kU
Firstly, for fixed q and k 2 (kL; kU �, checking the effect of m1 on the joint total cost per unit time JTC1(k; q; m1) in
Equation (6). Taking second-order derivative of JTC1(k; q; m1) with respect to m1, it gets

d2JTC1(k; q;m1)

dm2
1

¼ 2DS

(1� k)qm3
1

[ 0:
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Hence, JTC1(k; q; m1) is a convex function of m1. Consequently, the search for the optimal number of shipments
m1 (denoted by m�

1) is reduced to find a local minimum.
Next, for a given m1, the necessary conditions for the joint total cost per unit time JTC1(k; q; m1) to be minimised

are @JTC1(k; q; m1)=@ q ¼ 0 and @JTC1(k; q; m1)=@ k ¼ 0, simultaneously. These imply

hb1q
2 (1� k)2

2D
þ k
2x

� �
þ hb2kq

2 1� k
D

� 1

2x

� �
þ hv1q

2 1

P
þ (m1 � 1)(1� k)

2D
� m1

2P

� �
� m1Aþ S þ m1CT

m1
¼ 0; (8)

and

m1Aþ S þ m1CT

m1
þ (Ct þ Cs þ hv2)qþ

(2hb2 � hb1)(1� k)2q2

2D
þ (hb1 � hb2)q

2

2x
� h (1� k)2q

dDk
þ (2� m1)hv1q

2

2P
¼ 0: (9)

It is not easy to find the closed-form solutions of q and k from Equations (8) and (9) for a given m1. Besides, due
to the high-power expression of the polynomial function, the convexity property of the total cost per unit time cannot
be proved by using the Hessian matrix. Instead, we solve the problem by using the following search procedure:

For any given m1 and k 2 (kL; kU �, the necessary condition for the joint total cost per unit time JTC1(k; q; m1) to
be minimised is dJTC1(k; q; m1)=dq ¼ 0, which implies:

hb1q2(1� k)2

2D
þ hb2k (1� k)q2

D
þ (hb1 � hb2 )kq

2

2x
þ hv1q

2 1

P
þ (m1 � 1)(1� k)

2D
� m1

2P

� �
¼ m1Aþ S þ m1CT

m1
: (10)

Next, we take the second-order derivative of JTC1(k; q; m1) with respect to q and obtain

d2JTC1(k; q ; m1)

dq2
¼ 2D(m1Aþ S þ m1CT )

m1(1� k)q3
[ 0:

Consequently, for any given m1, and k 2 (kL; kU �, JTC1(k; q; m1) is a convex function of q. Thus, there exists a
unique value of q (say qm1;k) which minimises JTC1(k; q; m1) as:

qm1;k ¼

m1Aþ S þ m1CT

m1

� �
hb1(1� k)2

2D
þ hb2k (1� k)

D
þ (hb1 � hb2 )k

2x
þ hv1

1

P
þ (m1 � 1)(1� k)

2D
� m1

2P

� �� ��1
s

: (11)

Case 2. 0\k � kL
Similarly, for fixed q and k 2 (0; kL�, JTC2(k; q; m2) in Equation (7) can also be proved to be a convex function
of m2. Consequently, the search for the optimal shipment number m2 (denoted by m�

2) is also reduced to find a local
minimum.

Next, for any given m2 and k 2 (0; kL�, by using a similar approach as above, it can be easily found that
d2JTC2(k; q ; m2)=d q2[0, and hence the optimal solution of q (denoted by qm2;k) that minimises the joint total cost
per unit time JTC2(k; q; m2) can be obtained by solving the equation dJTC2(k; q ; m2)=dq ¼ 0 as follows:

qm2;k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2Aþ S þ m2CT

m2

� �
(hb1 þ hb2k)

2D
þ hv1

1

P
þ (m2 � 1)

2D
� m2

2P

� �� ��1
s

: (12)

Finally, for any given m1 or m2 and q, since both JTC1(k; q; m1) and JTC2(k; q; m2) are smooth curves of
k 2 (kL; kU � and k 2 (0; kL�, respectively, we can develop the following iterative algorithm to find the optimal solution
(k�; q�; m�) for the whole problem.
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Algorithm

Step 1: For given kL and kU ,
Step 1–1. Set m1 ¼ 1.
Step 1–2. Divide the interval (kL; kU � into n equal subintervals and let ki ¼ kL þ i (kU � kL)=n, i ¼ 1; 2; :::; n,

where n is large enough.
Step 1–3. For each ki, i ¼ 1; 2; :::; n, we find qm1;ki from Equation (11), and then calculate the corresponding

joint total cost per unit time JTC1(ki; qm1; ki ; m1) from Equation (6).
Step 1–4. Find Min

i¼1; 2; :::; n
JTC1(ki; qm1; ki ; m1) and let JTC1(k(m1); qm1; k(m1 )

; m1) ¼ Min
i¼1; 2; :::; n

JTC1(ki; qm1; ki ; m1):

Step 1–5. Set m1 ¼ m1 þ 1, and repeat Steps 1–2 to 1–4 to get JTC1(k(m1); qm1; k(m1 )
; m1) .

Step 1–6. If JTC1(k(m1); qm1; k(m1 )
; m1)[JTC1(k(m1�1); qm1�1; k(m1�1) ; m1 � 1), then JTC1(k

�
1; q

�
1; m

�
1) ¼ JTC1

(k(m1�1); qm1�1; k(m1�1) ; m1 � 1), and hence (k�1; q
�
1; m

�
1) ¼ (k(m1�1); qm1�1; k(m1�1) ; m1 � 1) is the opti-

mal solution for Case 1. Otherwise, return to Step 1–5.
Step 2: For given kL,

Step 2–1. Set m2 ¼ 1.
Step 2–2. Divide the interval (0; kL� into n equal subintervals and let kj ¼ j kL=n, j ¼ 1; 2; :::; n, where n is

large enough.
Step 2–3. For each kj, j ¼ 1; 2; :::; n, we find qm2;kj from Equation (12), and then calculate the corresponding

joint total cost per unit time JTC2(kj; qm2; kj ; m2) from Equation (7).
Step 2–4. Find Min

j¼1; 2; :::; n
JTC2(kj; qm2; kj ; m2) and let JTC2(k(m2); qm2; k(m2 )

; m2) ¼ Min
j¼1; 2; :::; n

JTC2(kj; qm2; kj ; m2):

Step 2–5. Set m2 ¼ m2 þ 1, and repeat Steps 2–2 to 2–4 to get JTC2(k(m2); qm2; k(m2 )
; m2) .

Step 2–6. If JTC2(k(m2); qm2; k(m2 )
; m2)[JTC2(k(m2�1); qm2�1; k(m2�1) ; m2 � 1), then JTC2(k

�
2; q

�
2; m

�
2) ¼ JTC2

(k(m2�1); qm2�1; k(m2�1) ; m2 � 1), and hence (k�2; q
�
2; m

�
2) ¼ (k(m2�1); qm2�1; k(m2�1) ; m2 � 1) is the opti-

mal solution for Case 2. Otherwise, return to Step 2–5.
Step 3: Find Min

k¼1; 2
JTCk(k

�
k ; q

�
k ; m

�
k). Let JTC(k�; q�; m�) ¼ Min

k¼1; 2
JTCk(k

�
k ; q

�
k ; m

�
k), and then (k�; q�; m�) is the

optimal solution.

The above algorithm can be implemented with the help of a computer-oriented numerical technique for a given set
of parameter values. Once the optimal solution (k�; q�; m�) is obtained, we can get the joint capital investment
I(k�) ¼ (1=d) ln½kU=k�� and Q� ¼ (1� k�)q� or q� according to the value of k� that belongs to the interval (kL; kU � or
(0; kL�. Furthermore, we have T� ¼ Q�=D and JTC� ¼ JTC(k�; q�; m�):

5. Numerical examples

Example 1: The theoretical results and algorithm presented above can be illustrated by using the following numerical
example. Let’s consider an inventory system with the following data: A ¼ 50, P ¼ 2000, D ¼ 1000, S ¼ 200, hb1 ¼ 2,
hb2 ¼ 0:5, hv1 ¼ 1:5, hv2 ¼ 0:5, x ¼ 3000, Cs ¼ 0:3, CT ¼ 10, Ct ¼ 0:3, Cp ¼ 10; h ¼ 0:01, d ¼ 0:0005, a ¼ 0:5,
kU ¼ 0:05 and kL ¼ 0:005 in appropriate units. In addition, we set n ¼ 500. Using the above algorithm, we obtain the
computational results as shown in Table 1.

Table 1 reveals that the optimal number of shipment per production cycle is m� ¼ 3; the batch quantity per shipment
is q� ¼ 244:093 units and the proportion of defective items is k� ¼ 0:00188\0:005 ¼ kL, which implies the buyer
makes no inspection on the received items. In this situation, the buyer’s optimal order quantity Q� ¼ q� ¼ 244:093
units and the optimal joint total cost per unit time JTC� = $1423.210. To see the effects of capital investment, we also

Table 1. Results of using the algorithm for Example 1.

m1 k(m1) qm1; k(m1) JTC1(k(m1); qm1; k(m1 )
; m1) m2 k(m2) qm2; k(m2) JTC2(k(m2); qm2 ; k(m2); m2)

1 0.01112 437.051 1845.608 1 0.00187 434.698 1581.589
2 0.01256 304.558 1705.688 2 0.00188 302.290 1443.940
3 0.01328 246.267 1683.857 3 0.00188 244.093 1423.210
4 0.01382 211.817 1694.322 4 0.00189 209.722 1434.361

Note: Boldface type expresses the optimal solution of Case 1 and 2, respectively, in Example 1.
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show the optimal joint total cost per unit time without capital investment JTC(kU ; q�; m�) = $ 1714.536. By comparing
these results, we can obtain that it is benefit for the buyer and vendor to jointly invest capital in quality improvements
of the product.

Example 2: From Equations (6) and (7), it is obvious that the change of value of Cs (i.e., the buyer’s inspection cost
per unit) only affects JTC1(k; q; m) while the change of value of Cp (i.e. the buyer’s penalty cost per defective item)
only affects JTC2(k; q; m). In this example, we discuss the influences of changes in these two cost parameters Cs and
Cp on m�, k�, q�, Q� and JTC� of Example 1. We take the values of Cs and Cp as Cs 2 f0:1; 0:3; 0:5g and
Cp 2 f10; 30; 50g, respectively. In addition, we consider h 2 f0:01; 0:03; 0:05g. Using the proposed algorithm above,
we obtain the computational results for different values of h, Cs and Cp as shown in Table 2.

From Table 2, we find that the optimal order, investment and inspection strategies are determined by trading off the
opportunity cost of the capital investment and examining cost against the penalty cost (external failure cost). When the
opportunity cost of the capital investment is low enough (for example, h ¼ 0:01 in Table 2), the optimal investment
police is to invest capacity jointly to reduce the defective rate less than kL( ¼ 0:005) whether the buyer’s inspection cost
per unit and penalty cost per defective item are large or not. In this case, the buyer’s optimal inspection policy is not to
inspect the received items. When the opportunity cost of the capital investment is high (for example, h ¼ 0:05 in
Table 2), if the buyer’s inspection cost per unit is high enough (for example, Cs ¼ 0:5 in Table 2), the joint capital
investment in improving production process quality still is considered by the buyer and vendor, and the buyer’s optimal
inspection policy is not to inspect the received items. Furthermore, if the buyer’s inspection cost per unit is low (for
example, Cs ¼ 0:1 in Table 2), the capital investment in improving production process quality is usually not considered
by the buyer nor vendor and the buyer should inspect all received items. On the other hand, if the buyer’s inspection

Table 2. Optimal solutions under different values of h, Cs and Cp.

h Cs Cp m� k� q� Q� JTC� Whether to invest Whether to inspect

0.01 0.1 10 3 0.00188 244.093 244.093 JTC2(k
�
2; q

�
2; m

�
2) ¼ 1423:210 Yes No

30 3 0.00065 244.129 244.129 JTC2(k
�
2; q

�
2; m

�
2) ¼ 1444:386 Yes No

50 3 0.00039 244.136 244.136 JTC2(k
�
2; q

�
2; m

�
2) ¼ 1454:441 Yes No

0.3 10 3 0.00188 244.093 244.093 JTC2(k
�
2; q

�
2; m

�
2) ¼ 1423:210 Yes No

30 3 0.00065 244.129 244.129 JTC2(k
�
2; q

�
2; m

�
2) ¼ 1444:386 Yes No

50 3 0.00039 244.136 244.136 JTC2(k
�
2; q

�
2; m

�
2) ¼ 1454:441 Yes No

0.5 10 3 0.00188 244.093 244.093 JTC2(k
�
2; q

�
2; m

�
2) ¼ 1423:210 Yes No

30 3 0.00065 244.129 244.129 JTC2(k
�
2; q

�
2; m

�
2) ¼ 1444:386 Yes No

50 3 0.00039 244.136 244.136 JTC2(k
�
2; q

�
2; m

�
2) ¼ 1454:441 Yes No

0.03 0.1 10 3 0.04361 251.283 240.325 JTC1(k
�
1; q

�
1; m

�
1) ¼ 1503:37 Yes Yes

30 3 0.04361 251.283 240.325 JTC1(k
�
1; q

�
1; m

�
1) ¼ 1503:37 Yes Yes

50 3 0.04361 251.283 240.325 JTC1(k
�
1; q

�
1; m

�
1) ¼ 1503:37 Yes Yes

0.3 10 3 0.00500 244.004 244.004 JTC2(k
�
2; q

�
2; m

�
2) ¼ 1528:891 Yes No

30 3 0.00196 244.091 244.091 JTC2(k
�
2; q

�
2; m

�
2) ¼ 1591:989 Yes No

50 3 0.00119 244.113 244.113 JTC2(k
�
2; q

�
2; m

�
2) ¼ 1622:150 Yes No

0.5 10 3 0.00500 244.004 244.004 JTC2(k
�
2; q

�
2; m

�
2) ¼ 1528:891 Yes No

30 3 0.00196 244.091 244.091 JTC2(k
�
2; q

�
2; m

�
2) ¼ 1591:989 Yes No

50 3 0.00119 244.113 244.113 JTC2(k
�
2; q

�
2; m

�
2) ¼ 1622:150 Yes No

0.05 0.1 10 3 0.05000 252.372 239.753 JTC1(k
�
1; q

�
1; m

�
1) ¼ 1504:010 No Yes

30 3 0.05000 252.372 239.753 JTC1(k
�
1; q

�
1; m

�
1) ¼ 1504:010 No Yes

50 3 0.05000 252.372 239.753 JTC1(k
�
1; q

�
1; m

�
1) ¼ 1504:010 No Yes

0.3 10 3 0.00500 244.004 244.004 JTC2(k
�
2; q

�
2; m

�
2) ¼ 1620:994 Yes No

30 3 0.05000 252.372 239.753 JTC1(k
�
1; q

�
1; m

�
1) ¼ 1717:536 No Yes

50 3 0.05000 252.372 239.753 JTC1(k
�
1; q

�
1; m

�
1) ¼ 1717:536 No Yes

0.5 10 3 0.00500 244.004 244.004 JTC2(k
�
2; q

�
2; m

�
2) ¼ 1620:994 Yes No

30 3 0.00327 244.053 244.053 JTC2(k
�
2; q

�
2; m

�
2) ¼ 1710:483 Yes No

50 3 0.00198 244.090 244.090 JTC2(k
�
2; q

�
2; m

�
2) ¼ 1760:750 Yes No
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cost per unit is medium and the penalty cost per defective item is not low (for example, Cs ¼ 0:3 and Cp P 30 in
Table 2), the capital investment in improving procedure process quality is not considered by the buyer nor vendor and
the buyer should inspect all received items. Finally, for a medium opportunity cost of the capital investment (for
example, h ¼ 0:03 in Table 2), the optimal investment policy is to invest capacity jointly, and the buyer’s optimal policy
is to inspect the received items as the buyer’s inspection cost per unit is low (for example, Cs ¼ 0:1 in Table 2). How-
ever, when the buyer’s inspection cost is not low (for example, Cs P 0:3 in Table 2), the buyer does not inspect the
received items.

Example 3: In order to understand the impact of the proportion of capital investment on the buyer’s and vendor’s total
costs, we now compare the optimal total cost per unit time of the buyer with that of the vendor. The data is the same as
Example 1 except h ¼ 0:01 and a 2 f0; 0:25; 0:5; 0:75; 1g. Using the proposed algorithm above, we obtain the
computational results for different values of a as shown in Table 3. In addition, for comparison, we also list the optimal
solution without capital investment in Table 3.

From Table 3, we find that the buyer’s optimal total cost per unit time increases while the vendor’s optimal total cost
per unit time decreases as the value of a increases. Note that when a ¼ 1 (i.e. capital investment in improving produc-
tion process quality is completely paid by the buyer), the vendor has a minimum total cost per unit time TCv(k

�; m�) =
$889.633. On the contrary, when a ¼ 0 (i.e. capital investment in improving production process quality is completely
paid by the vendor), the buyer has a minimum total cost per unit time TCb(k

�; q�) = $467.962. Furthermore, we find
that for the value of a 2 f0; 0:25; 0:5; 0:75; 1g, the buyer’s or joint total cost with investment is less than that without
investment, while the vendor’s total cost with investment is greater than that without investment as a ¼ 0. That is, it is
unfavourable to the integrated inventory system if the investment expense in reducing the defective rate of items is
completely paid by the vendor. Consequently, even though the optimal joint total cost per unit time for the integrated
model is not affected by the value of a, it still play a significant role in an integrated production and inventory model
with defective items, and is a critical coordination factor to accomplish global optimisation in the field of inventory
management. It is why our paper thinks that the buyer and vendor should agree to jointly invest capital to improve the
production processes.

6. Conclusions

This study develops an integrated production-inventory model with defective items. The defective rate of the product
can be improved through joint capital investment from the vendor and buyer. We then provide an algorithm to find the
optimal solution procedure. Furthermore, several numerical examples are presented to demonstrate our model and
solution. Numerical examples reveal that (1) the optimal order, investment and inspection policies are determined by
trading off the opportunity cost of the capital investment and inspecting cost against the penalty cost, and (2) the
proportion of vendor’s/buyer’s capital investment in quality improvement plays a significant role in an integrated
production-inventory model with imperfect production processes, and is a critical coordination factor to accomplish the
target of global optimisation in the field of inventory management. We believe that our work will provide a basic
foundation for further study of this kind of integrated inventory model with defective items.
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Table 3. Compare buyer’s and vendor’s optimal total costs under different values of a with no capital investment

a TCb(k
�; q�) TCv(k

�; m�) JTC ¼ C(k�; q�; m�)

0.00 467.962 955.248 1423.210
0.25 484.366 938.844 1423.210
0.50 500.770 922.440 1423.210
0.75 517.174 906.036 1423.210
1.00 533.577 889.633 1423.210
No investment 773.720 940.816 1714.536
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